

L3

Hossein Khani

Content:

- > Why Data Analyses
- Data Manipulation (Pandas Library)
- Data Visualisation (Matplotlib, Pyplot, Seaborn)
- Linear Regression
- Principle Component Analysis
- Non-Negative Matrix Factorization
- Orthogonal Matching pursuit

NEEDS:

- Basic Python Skills (Lists, Dictionaries, Functions, methods,....)
- > Working with DataFrames (Data Cleaning and manipulation with Pandas Library)
- Working with Matrices (Numpy Library)
- > Mathematics behind Machine learning Techniques (Mostly probability and statistics)
- Machine learning library (Scipy or Sklearn)

QUESTION:

Input:

longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY
	Outpu	ut:							
	-121.32	39.43	18.0 18	60.0 409	9.0 741.0	0 349.0	1.8672	??	INLAND

REGRESSION

QUESTION:

Input:

species	margin1	margin2	margin3	margin4	margin5	margin6	margin7	margin8	 texture55	texture56	texture57	texture58
Acer_Opalus	0.007812	0.023438	0.023438	0.003906	0.011719	0.009766	0.027344	0.0	 0.007812	0.000000	0.002930	0.002930
Pterocarya_Stenoptera	0.005859	0.000000	0.031250	0.015625	0.025391	0.001953	0.019531	0.0	 0.000977	0.000000	0.000000	0.000977
Quercus_Hartwissiana	0.005859	0.009766	0.019531	0.007812	0.003906	0.005859	0.068359	0.0	 0.154300	0.000000	0.005859	0.000977

Output: ??

0.000000 0.003906 0.023438 0.005859 0.021484 0.019531 0.023438 0.0 ... 0.000000 0.000977 0.000000 0.000000

Install Python

https://www.python.org/

> pip Python package management system : python3 -m pip --version

- install jupyter notebook: python3 -m pip install -U jupyter
- Install pandas: pip install pandas

- The Jupyter Notebook is the original web application for creating and sharing computational documents.
- Pandas the main tool of data analyse
- Pandas permits us to import data from various sources for example (CSV), and manipute them.

DataFrames:

https://insights.stackoverflow.com/survey

How to use Pandas to work with DataFrame.....

- 1. How to read data from csv file,
- 2. Take a look at the datafram,
- 3. Where dataframe comes from, its equivalent in python
- 4. Series objects and accessing multi-columns
- 5. Indexing
- 6. Accessing rows in DataFrames
- 7. Setting index for data frame
- 8. Changing columns' names
- 9. Changing single row's values

Numpy:

As a Data Analyst how to collect data?

List?

- Collection of values
- Hold different types
- Change, add, remove

> What we need more?

- Mathematical operations over collections
- > Speed

Numpy:

Body mass Index:

```
Height = [1.73, 1.68, 1.71, 1.89, 1.79]
Weight = [65.4, 59.2, 63.6, 88.4, 68.7]
```

Weight / Height ** 2

```
TypeError Traceback (most recent call last)
<ipython-input-43-0f6f8ba4f85f> in <module>
----> 1 Weight / Height ** 2
```

TypeError: unsupported operand type(s) for ** or pow(): 'list' and 'int'

To Solve: Looping over elements? — Not fast and efficient

Numpy (numeric python):

Solution?

nympy arrays:

- Alternative to python lists
- Calculations over entire arrays
- Easy and Fast

To Install: pip3 install numpy

Numpy

import numpy as np

```
np_height = np.array(Height)
np_height
```

array([1.73, 1.68, 1.71, 1.89, 1.79])

np_weight = np.array(Weight)
np_weight

array([65.4, 59.2, 63.6, 88.4, 68.7])

```
bmi = np_weight / np_height**2
bmi
```

array([21.85171573, 20.97505669, 21.75028214, 24.7473475 , 21.44127836])

Python is able to treat numpy arrays as single elements.

Where the speed comes from?

Numpy arrays collect values of the same type:

- Either integer
- Either float
- String
-

Numpy (Remarks)

np.array([1.0 , "Hossein" , True])

array(['1.0', 'Hossein', 'True'], dtype='<U32')

• Nympy array, is a data type in python.

 $\circ~$ It has its own methods.

 \circ These methods might act differently on arrays compared to other types.

Numpy (Remarks)

Example:

```
python_list = [1,2,3]
numpy_array = np.array([1,2,3])
```

python_list + python_list

```
[1, 2, 3, 1, 2, 3]
```

numpy_array+numpy_array

```
array([2, 4, 6])
```

Numpy (Subsetting)

Example:

mi[2]	Referring to specific index
1.750282138093777	
mi > 21	Looking for specific values
rray([True, False, True,	True, True])
mi[bmi<21]	
rray([20.97505669])	

Numpy (2D)

type(np_height)

numpy.ndarray

np_2d

```
array([[ 1.73, 1.68, 1.71, 1.89, 1.79],
[65.4, 59.2, 63.6, 88.4, 68.7 ]])
```

np_2d.shape

(2, 5)

Numpy (2D)

array([[1.73, 1.68, 1.71, 1.89, 1.79], [65.4, 59.2, 63.6, 88.4, 68.7]])

np_2d[0]

array([1.73, 1.68, 1.71, 1.89, 1.79])

Numpy (Basic Statistics)

```
[65.4 , 59.2 , 63.6 , 88.4 , 68.7 ]])
```

np.mean(np_2d[0,:])

1.760000000000002

np.median(np_2d[0,:])

1.73

np.sum(np_2d[0,:])

8.8

Numpy (Data Generation)

height = np.round(np.random.normal(1.75,2.0, 5000),2)
weight = np.round(np.random.normal(10.32,15.0, 5000),2)

np_city = np.column_stack((height,weight))

np_city.shape

(5000, 2)

Numpy (Data Generation)

```
array([[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1]])
```

np.full((2,3), 6, dtype = int)

```
array([[6, 6, 6],
[6, 6, 6]])
```

Numpy (Dtype)

Python types: int, float, bool,...

Their size depends on the platform they are applied to...

> Dtypes: numpy numerical types are instances of dtype objects. The numpy types have fixed-sizes.

np.int32, np.int64, np.bool8, np.float32, np.float64

```
z = np.zeros([2,3], dtype = np.bool8)
```

```
z
```

```
array([[False, False, False],
[False, False, False]])
```

type(z)

numpy.ndarray

z.dtype

dtype('bool')

Data Visualisation:

The most important visualization library : Matplotlib:

plt.plot() :

plt.scatter() :

years = [1950,1970,1990,2010]
pop = [2.519, 3.692, 5.263, 6.972]

plt.scatter(years , pop)
plt.show()

Scatter plot is used when we need to measure the correlation between two attributes.

plt.scatter() :

```
np.corrcoef(years, pop)
```

```
array([[1. , 0.99664316],
[0.99664316, 1. ]])
```

```
import scipy.stats as st
st.pearsonr(years, pop)
(0.996643163032238, 0.0033568369677620113)
Correlation P-value
```

P-Value:

Probabilities?

P-Value:

P-Value (flipping a coin 5 times):

plt.scatter() :

years = [1950,1970,1990,2010]
pop = [2.519, 3.692, 5.263, 6.972]

plt.scatter(years , pop)
plt.show()

Scatter plot is used when we need to measure the correlation between two attributes.

plt.hist() :

```
values = [0,0.6,1.4,1.6,2.2,2.5,2.6,3.2,3.5,3.9,4.2,6]
```

```
plt.hist(values , bins = 3)
```

```
(array([4., 6., 2.]),
array([0., 2., 4., 6.]),
<BarContainer object of 3 artists>)
```


plt.hist() :

> Which is the most frequent data? statistics.mode()

> The data is centered around which point? Nupmy.mean()

What is the value observed in 50% of the time? Numpy.median()

How vary the values are ? np.std()

Distribution of Data:

Most of the time it takes 80 mins

Half of the times it takes 80 mins

On average it takes 80 mins

How long does it take to go from City A to city B
Distribution of Data:

Distribution of Data:

Left-Skewed (Negative Skewness)

Right-Skewed (Positive Skewness)

Add labels to the axis: plt.xlabel() , plt.ylabel()

>Add Title to the plot : plt.title()

>Changing values one the axis: plt.xticks() , plt.yticks()

► Labeling values on the axis

```
years = [1950,1970,1990,2010]
pop = [2.519, 3.692, 5.263, 6.972]
np_years = np.array(years)
np_pop = np.array(pop)
plt.plot(np_years , np_pop)
plt.xlabel('year')
plt.ylabel('populattion')
plt.title('World population in years')
```

Text(0.5, 1.0, 'World population in years')


```
years = [1950,1970,1990,2010]
pop = [2.519, 3.692, 5.263, 6.972]
np_years = np.array(years)
np_pop = np.array(pop)
plt.plot(np_years , np_pop)
plt.xlabel('year')
plt.ylabel('populattion')
plt.yticks([0,2,4,6,8])
plt.title('World population in years')
```

Text(0.5, 1.0, 'World population in years')


```
years = [1950,1970,1990,2010]
pop = [2.519, 3.692, 5.263, 6.972]
np_years = np.array(years)
np_pop = np.array(pop)
plt.plot(np_years , np_pop)
plt.xlabel('year')
plt.ylabel('populattion')
plt.yticks([0,2,4,6,8])
plt.title('World population in years')
```

Text(0.5, 1.0, 'World population in years')


```
years = [1950,1970,1990,2010]
pop = [2.519, 3.692, 5.263, 6.972]
np_years = np.array(years)
np_pop = np.array(pop)
plt.plot(np_years , np_pop)
plt.xlabel('year')
plt.ylabel('populattion')
plt.yticks([0,2,4,6,8],['B','2B','4B','6B','8B'])
plt.title('World population in years')
```

Text(0.5, 1.0, 'World population in years')

Machine Learning:

How you write a code with traditional programming technique to detect spams?

What a spam looks like, what are the patterns,
Write a detection algorithm for each pattern,....

Problem??

There is an infinite number of patterns!

ML (Supervised):

In ML, the model will learn (based on some examples) which patterns are representative of a spam.

Classification

ML (Supervised): Value

Regression

	Country	GDP per capita	Life satisfaction
0	Australia	50961.865	82.1
1	Austria	43724.031	81.0
2	Belgium	40106.632	80.5
3	Brazil	8669.998	73.7
4	Canada	43331.961	81.5
5	Chile	13340.905	78.9
6	Czech Republic	17256.918	78.2

Given a GDP per capita in a country, can you guess what is the life satisfaction index?

```
import numpy as np
plt.scatter(data['GDP per capita'] , data['Life satisfaction'])
x = np.array([1000 , 100000])
plt.xlabel('GDP per capita')
plt.ylabel('Life satisfaction')
plt.show()
```


 $\begin{array}{l} life \ satisfaction \\ = \ \theta_0 + \ \theta_1 \ * \ \ GDP \ per \ Capita \end{array}$

life satisfaction = $\theta_0 + \theta_1 * GDP per Capita$

ML (Linear Assumption):

 $\hat{y}^{(i)} = \theta_0 + \theta_1 \times x^{(i)}$

Main assumption: The data follows a linear model:

life satisfaction = $\theta_0 + \theta_1 * GDP$ per Capita

> How you know which values make your model perform best?

- o Fitness Function
- $\circ~$ Cost Function (typically used for linear regression problems.)

Linear Regression algorithm comes into play:

you feed it your training examples and it finds the parameters that make the linear model fit best to your data. This is called *training* the model.

Cost Function:

Cost Function:

Cost Function: Root Mean Square Error

Sklearn (Python library for sklearn)

from sklearn.linear_model import LinearRegression

model = LinearRegression()

ML (Example): Predictor (A combination of attributes) Life satisfaction GDP per capita Target variable 50961.865 82.1 43724.031 81.0 Training (Minimizing RMSE) 40106.632 80.5 **Predictions** 8669.998 73.7 Samples 43331.961 81.5 [[81.10935751], 13340.905 78.9 [80.47096811], [80.15190729], 17256.918 78.2 [77.37914212], 52114.165 80.1 [80.43638686], [77.79112415], 76.5 17288.083 [78.13652323], [81.21099235], 41973.988 80.7 [78.13927203], [80.3166113],

Assumption of Linearity

ML:

Note: In general their might be more than one attribute:

- > In this case, the first attribute of simple (i) is represented by variable $x_1^{(i)}$,
- > The second attribute would be $x_2^{(i)}$
- > The attribute p would be $x_p^{(i)}$

The linear assumption:

$$\hat{y}^{(i)} = \theta_0 + \theta_1 \times x_1^{(i)} + \theta_2 \times x_2^{(i)} + \dots + \theta_p \times x_p^{(i)}$$

Hyperplane

How the training part works? (The minimization of RMSE)

Min RMSE =
$$\sqrt{\frac{1}{m} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})^2}$$

Is equal to Min $(\theta^T X - y)^2$

$$\theta = \begin{bmatrix} \theta_0 & \theta_1 & \theta_2 & \dots & \theta_p \end{bmatrix} \qquad X = \begin{pmatrix} 1 & x_1^1 & x_2^1 & \cdots & x_p^1 \\ 1 & x_1^2 & x_2^2 & \cdots & x_p^2 \\ \vdots & \vdots & \cdots & \vdots & \\ 1 & x_1^n & x_2^n & \cdots & x_p^n \end{pmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

How the training part works? (The minimization of RMSE)

$$\begin{aligned} & \text{Min} \quad (\theta^T X - y)^2 \\ & \arg \min_{\theta \in \mathbb{R}^{p+1}} (\theta X - Y)^T (\theta X - Y) \\ & \nabla_{\theta} (\theta X - Y)^T (\theta X - Y) = 0 \\ & -2 X^T (y - \theta X) = 0 \end{aligned} \qquad \begin{aligned} & \text{Normal Equation} \\ & \theta = (X^T X)^{-1} X^T y \end{aligned}$$

It has a solution only when $(X^T X)^{-1}$ is inversible (when it's determinant is non-zero).

Let's test the normal equation by generating random data that follow linear pattern:

```
import numpy as np
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
```

Predictor

Target Variable

Create matrix X

X_b = np.c_[np.ones((100, 1)), X] # add x0 = 1 to each instance theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)

Predictor


```
X_new = np.array([[0], [2]])
X_new_b = np.c_[np.ones((2, 1)), X_new]
y_predict = X_new_b.dot(theta_best)
y_predict
```

```
array([[4.06669028],
[9.91402929]])
```

ML (Exercise):

Calculate normal equation for the dataset of GDP per capita / Life satisfaction.

ML (Gradient Descent):

Problems with normal equations:

- 1. In many real cases $(X^T X)^{-1}$ is not invertible,
- 2. Even if it is for bid data sets the computational cost is $O(n^3)$ or $O(n^{2.4})$.

> So, instead of calculating θ from the normal equation, the learning algorithms use a technique to estimate this value which is called Gradient Descent.

1. Start with some initial parameters θ ,

2. Tweaking the parameters (θ) iteratively, in a way that it reduces the cost function.

- 1. Start from a position (x, y),
- 2. Find the negative slope (to descend)
- 3. Take appropriate size step.

ML (Gradient Descent-Example):

 \succ Suppose we start with initial θ_0 and θ_1 .

> In which direction we should go to reduce the cost function?

$$MSE = (h_{\theta}(x^{(1)}) - y^{(1)})^{2} + (h_{\theta}(x^{(2)}) - y^{(2)})^{2} + (h_{\theta}(x^{(3)}) - y^{(3)})^{2}$$

$$\frac{d(MSE)}{d(\theta_{0})} = \frac{d(MSE)}{d(h_{\theta})} \times \frac{d(h_{\theta})}{d(\theta_{0})} \times$$

$$\frac{d(MSE)}{d(\theta_1)} = \frac{d(MSE)}{d(h_{\theta})} \times \frac{d(h_{\theta})}{d(\theta_1)}$$

$$\frac{d(MSE)}{d(\theta_1)} = 2\left(h_\theta(x^{(1)}) - y^{(1)}\right) \times x^{(1)} + 2\left(h_\theta(x^{(2)}) - y^{(2)}\right) \times x^{(2)} + 2\left(h_\theta(x^{(3)}) - y^{(3)}\right) \times x^{(3)}$$

ML (Gradient Descent-Example):

Update Functions:

new θ_0 = previous θ_0 - step size θ_0 new θ_1 = previous θ_1 - step size θ_1

ML (Gradient Descent-summary):

- 1. Random initialization of parameters ($\theta_0, \theta_1, \theta_2, ...$),
- 2. Calculate the slopes using gradient descent and chain rule,
- 3. Compute the steps using a pre-defined learning rate,
- 4. Update the parameters,

Note: In Machine learning, all the parameters that should be predefined in order to use the model are called hyper parameters. Hyper parameters are different from parameters. The parameters will be learned during training,...

ML (Error Calculation):

Calculate the Root Mean Square Error for the predictions you made using linear regression for the dataframe GDP per capita/ life satisfaction(Use the fonctionalities of numpy).

ML (Error Calculation):

Sub-module metrics and the function mean_squared_error of Sklearn.

from sklearn.metrics import mean_squared_error
mse = mean_squared_error(np.array(data['Life satisfaction']) , predictions)
rmse = np.sqrt(mse)

ML (Question):

> Is this error reliable for future predictions?

> Does it mean that our model will perform the best to predict?

ML (Challenges of training):

Overfitting

ML (Challenges of training):

Overfitting

ML (Concept of cross validation):

ML (Concept of cross validation):

rmse scores

```
array([2.06550957, 0.98307636, 1.45811595, 2.0309329 , 3.211669 ,
3.09781241, 1.78440725, 4.78091017, 2.29082548, 2.46068562])
```

Cost

Learning rate often is a value between 0 and 1, to find the best learning rate, we need to test the validation error of the candidate models with different learning rate.

Cost

Batch Gradient descent

Different

versions of

Gradient

Descent

$$\nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} \operatorname{MSE}(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_1} \operatorname{MSE}(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_n} \operatorname{MSE}(\boldsymbol{\theta}) \end{pmatrix} = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

 $\boldsymbol{\theta}^{(\text{next step})} = \boldsymbol{\theta} - \eta \, \nabla_{\boldsymbol{\theta}} \, \text{MSE}\big(\boldsymbol{\theta}\big)$

Stochastic Gradient descent

Different versions of Gradient Descent

- Choose a sample randomly,
- Update the parameters based on the randomly selected sample,

Stochastic Gradient descent

٠

٠

Choose a sample randomly,

Different versions of Gradient Descent

Update the parameters based on the randomly selected sample,

Solution: Use mini-batch Gradient Descent

ML (Training Error- Validation Error):

ML (Regularization):

Problems with mean squared error:

- If the attributes are correlated, there is no unique solution(),
- If the number of attributes are more than the number of

observation there is a risk of over-fitting.

To reduce the risk of over-fitting there are techniques to control the complexity of the model.

Control the increase

in parameters heta

ML (Regularization-Lasso):

Minimise Mean square error, but in addition take care of parameters not to be too big,

ML (Regularization-Lasso):

Minimise Mean square error, but in addition take care of parameters not to be too big,

ML (Regularization-Implementation):

import pandas as pd
data = pd.read_csv('housing.csv')
data.head(2)

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY

```
data.info()
```



```
data.info()
```


plt.scatter(data['median_house_value'] , data['median_income'], alpha = 0.4)
plt.show()

corr_matrix = data.corr()
corr_matrix

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
longitude	1.000000	-0.924664	-0.108197	0.044568	0.069608	0.099773	0.055310	-0.015176	-0.045967
latitude	-0.924664	1.000000	0.011173	-0.036100	-0.066983	-0.108785	-0.071035	-0.079809	-0.144160
housing_median_age	-0.108197	0.011173	1.000000	-0.361262	-0.320451	-0.296244	-0.302916	-0.119034	0.105623
total_rooms	0.044568	-0.036100	-0.361262	1.000000	0.930380	0.857126	0.918484	0.198050	0.134153
total_bedrooms	0.069608	-0.066983	-0.320451	0.930380	1.000000	0.877747	0.979728	-0.007723	0.049686
population	0.099773	-0.108785	-0.296244	0.857126	0.877747	1.000000	0.907222	0.004834	-0.024650
households	0.055310	-0.071035	-0.302916	0.918484	0.979728	0.907222	1.000000	0.013033	0.065843
median_income	-0.015176	-0.079809	-0.119034	0.198050	-0.007723	0.004834	0.013033	1.000000	0.688075
median_house_value	-0.045967	-0.144160	0.105623	0.134153	0.049686	-0.024650	0.065843	0.688075	1.000000

corr_matrix['median_house_value'].sort_values(ascending = False)

median_house_value	1.000000	
median_income	0.688075 <	
total_rooms	0.134153	
housing_median_age	0.105623	
households	0.065843	
total_bedrooms	0.049686	
population	-0.024650	
longitude	-0.045967	
latitude	-0.144160	
Name: median_house_	value, dtype:	float64

```
data["rooms_per_household"] = data["total_rooms"]/data["households"]
data["bedrooms_per_room"] = data["total_bedrooms"]/data["total_rooms"]
data["population_per_household"]=data["population"]/data["households"]
```

```
corr_matrix2 = data.corr()
corr_matrix2['median_house_value'].sort_values(ascending = False)
```

median_house_value	1.000000			
median_income	0.688075			
rooms_per_household	0.151948			
total_rooms	0.134153			
housing_median_age	0.105623			
households	0.065843			
total_bedrooms	0.049686			
population_per_household	-0.023737			
population	-0.024650			
longitude	-0.045967			
latitude	-0.144160			
bedrooms_per_room	-0.255880			
Name: median_house_value,	dtype: float64			

Option 1:

df = data.copy()

Fill out missing values

```
median_nbbedrooms = df['total_bedrooms'].median()
```

```
median_nbbedroom_per_room = df['bedrooms_per_room']
```

```
df['total_bedrooms'].fillna(median_nbbedrooms , inplace = True)
```

df['bedrooms_per_room'].fillna(median_nbbedroom_per_room , inplace = True)

Option 2:

```
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="median")
data.drop('ocean_proximity',axis = 1, inplace = True)
imputer.fit(data)
SimpleImputer(strategy='median')
```

missing values

Fill out

```
imputer.statistics_
```

```
array([-1.18490000e+02, 3.42600000e+01, 2.90000000e+01, 2.12700000e+03,
4.35000000e+02, 1.16600000e+03, 4.09000000e+02, 3.53480000e+00,
1.79700000e+05, 5.22912879e+00, 2.03162434e-01, 2.81811565e+00])
```

X = imputer.transform(data)

Numpy array

data = pd.DataFrame(X , columns = data.columns)

ML:

```
data.hist( bins = 50 , figsize = (12,8))
plt.show()
```

Distribution of data

ML:

Scale of Data

ML :

Why scaling the data?

- 1. Faster to train the data,
- 2. More stable model (not too much sensitive to new samples).

ML:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled = scaler.fit transform(data)
scaled data = pd.DataFrame(scaled , columns = data.columns)
```

latitude

```
scaled_data.hist(bins = 50 , figsize = (12,8))
plt.show()
```

longitude

total bedrooms total rooms median_income households 0 1 ⁰rooms_per_household -2 beBrooms2per_room n

Standardization

ML:

Does it

\mathbf{N}

import numpy as np data log = np.log(data)

data_log.hist(bins = 50 , figsize = (12,8)) plt.show()

0

0

0

0

0

3.50

0

0

Log Transformation

ML:

Log Transformation

Pre-processing

All the steps including data acuisition and data preparation like handling null values, data transformation, standardization, encoding, ... are called pre-processing,

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
features = scaled_data.drop('median_house_value' ,axis = 1)
target = scaled_data[['median_house_value']]
lin model = LinearRegression()
```

Training loss:

```
from sklearn.metrics import mean_squared_error
lin_model.fit(features,target)
predictions = lin_model.predict(train)
mse = mean_squared_error(target, predictions )
rmse = np.sqrt(mse)
rmse
```

0.5945904829245694

Validation loss:

```
rmse = np.sqrt(-scores)
rmse
```

array([0.56986624, 0.53786391, 0.74194455, 0.49912052, 0.69925988, 0.6093961, 0.46481939, 0.73728758, 0.67160372, 0.48182607])

rmse.mean()

0.6012987948287257

Validation loss:

```
rmse = np.sqrt(-scores)
rmse
```

array([0.56986624, 0.53786391, 0.74194455, 0.49912052, 0.69925988, 0.6093961, 0.46481939, 0.73728758, 0.67160372, 0.48182607])

rmse.mean()

0.6012987948287257

What is the meaning of low amount training loss and relatively high value of validation loss?

Example: learning life expectancy based on gdp per capita by linear regression.

gdp per capita life expectancy population color Underfitting 43.828 0 974.580338 31.889923 red Example Nb samples = 142 5937.029526 76.423 3.600523 1 green 2 6223.367465 72.301 33.333216 blue 3 4797.231267 42.731 12.420476 blue 75.320 40.301927 12779.379640 4 yellow

features = data[['gdp per capita']] target = data[['life expectancy']] model = LinearRegression() model.fit(features , target) predicts = model.predict(features) mse = mean squared error(target, predicts) rmse = np.sqrt(mse) rmse 8.835757281743057 scores = cross_val_score(model, features, target, scoring = "neg_mean_squared_error", cv = 10) rmse = np.sqrt(-scores) rmse.mean() 8.79033632355108 High error values of training and loss!

Example: learning life expectancy based on gdp per capita by linear regression.

Underfitting Example

```
. . . . . . .
```

Example: learning life expectancy based on gdp per capita by linear regression.

```
plt.scatter(data[['gdp per capita']] , data[['life expectancy']] , alpha = 0.5)
tetha_0 = model.intercept_[0]
tetha_1 = model.coef_[0]
y = tetha_0 + tetha_1 * np.array(data['gdp per capita'])
plt.plot(data['gdp per capita'] , y , c = 'r')
plt.show()
```


The model is too simple to be trained for the dataset.

Example: learning life expectancy based on gdp per capita by linear regression.

```
plt.scatter(data[['gdp per capita']] , data[['life expectancy']] , alpha = 0.5)
tetha_0 = model.intercept_[0]
tetha_1 = model.coef_[0]
y = tetha_0 + tetha_1 * np.array(data['gdp per capita'])
plt.plot(data['gdp per capita'] , y , c = 'r')
plt.show()
```


The model is too simple to be trained for the dataset.

Solutions to underfitting:

- 1. Choose a more complex learning model,
- 2. Use more features,

- > We train a model to do predictions,
- > A model performs well if it do the write predictions on unseen data,
- > Therefore, Prevent Data Leakage during training (How?)
- > Split data to train (80%) and test (20%).

- 1. Given a data set, split the data to representative train set and test set,
- 2. Do data cleaning and pre-processing on features (on both train and test)
- 3. Train different models on the train set and find the best one by evaluating their training and validation errors,
- 4. Do prediction using the best model on the test set,
- 5. Evaluate the performance of final model on test data (if possible)

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY

Housing dataset:

data.shape		
(20640, 10)		
train_set.shape		
(16512, 10)		

Based on correlation values we know that median income is strongly related to the median house value,

data['median_income'].hist(bins = 50)

Based on correlation values we know that median income is strongly related to the median house value,

Test Set Being Representative:

data['income cat'].hist()

<AxesSubplot:>

Test Set Being

```
from sklearn.model selection import StratifiedShuffleSplit
                       split = StratifiedShuffleSplit(n splits = 1, test size = 0.2, random state = 42)
                       for (train_index, test_index) in split.split(data , data['income_cat']):
                           strat train set = data.loc[train index]
                           strat test set = data.loc[test index]
                       strat train set['income cat'].value counts() / len(strat train set)
Representative:
                            0.350594
                       3
                           0.318859
                       2
                       4
                            0.176296
                       5
                            0.114402
                            0.039850
                       Name: income_cat, dtype: float64
                       strat test set['income cat'].value counts()/len(strat test set)
                            0.350533
                            0.318798
                            0.176357
                            0.114583
                            0.039729
                       Name: income cat, dtype: float64
```

Some notes

- 1. If you have have filled the null values in training set with statistic measures(median, mean, mode), fill the null values in the test set with the corresponding values in the training set,
- 2. Use the same Transformation technique on both train and test,

```
train_np = num_pipeline.fit_transform(strat_train_set)
train_set = pd.DataFrame(train_np , columns = strat_train_set.columns)
```

```
test_np = num_pipeline.fit_transform(strat_test_set)
test_set = pd.DataFrame(test_np,columns = strat_test_set.columns)
```

ML (Binary Classification problem) :

> The target values are dochotomous (They only have two values 0 and 1 or -1 and 1)

Multi-classification: The target values are finite discrete (0,1,2,...,9)

Difference weth regression problems: we need some extra part to convert the output of regression to a specified discrete range.

ML (Classification-MNIST) :

from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1)

mnist.keys()

dict_keys(['data', 'target', 'frame', 'categories', 'feature_names', 'target_names', 'DESCR', 'details', 'url'])

X, y = mnist["data"], mnist["target"]

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

ML (Classification-MNIST) :

import matplotlib as mpl
import matplotlib.pyplot as plt

```
some_digit = X[0]
some_digit_image = some_digit.reshape(28, 28)
```

```
plt.imshow(some_digit_image, cmap = mpl.cm.binary, interpolation="nearest")
plt.axis("off")
plt.show()
```



```
y_train_5 = (y_train == 5) # True for all 5s, False for all other digits.
y_test_5 = (y_test == 5)
```


Mean square error is not always the best

MSE:
$$(\theta^T X - y)^2$$

A total mis-classification might minimize mean-squared-error.

from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train_5)

/Users/hosseinkhani/miniconda3/envs/dataenv/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:763: Conver genceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(

Stochastic Gradient Descent Classifier:

- 1. Minimize the Hinge loss (max(0, 1 t, y))
- 2. Do the minimization using stochastic gradient descent algorithm


```
from sklearn.linear_model import SGDClassifier
sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train, y_train_5)
```

```
SGDClassifier(random_state=42)
```


from sklearn.model_selection import cross_val_score
cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")

array([0.95035, 0.96035, 0.9604])

Is this performance reliable?

```
from sklearn.base import BaseEstimator
class Never5Classifier(BaseEstimator):
    def fit(self, X, y=None):
        pass
    def predict(self, X):
        return np.zeros((len(X), 1), dtype=bool)
```

never_5_clf = Never5Classifier()

```
from sklearn.model_selection import cross_val_score
cross_val_score(never_5_clf, X_train, y_train_5, cv=3, scoring="accuracy")
```

```
array([0.91125, 0.90855, 0.90915])
```

Imbalanced Classification problem

ML (Binary-Classification-Metrics) :

```
from sklearn.model_selection import cross_val_predict
y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
```

```
y_train_pred
```

```
array([ True, False, False, ..., True, False, False])
```


ML (Binary-Classification-Metrics) :

y_train_perfect_predictions = y_train_5 # pretend we reached perfection confusion_matrix(y_train_5, y_train_perfect_predictions)

array([[54579, 0], [0, 5421]])

precision =
$$\frac{TP}{TP+FP}$$
 (true positive rate)

recall =
$$\frac{TP}{TP+FN}$$
 (false negative rate)

```
from sklearn.metrics import precision_score , recall_score
precision = precision_score(y_train_5 , y_train_pred)
recall = recall_score(y_train_5 , y_train_pred)
print("The precision score is {} and the recall score is {}".format(precision , recall))
```

The precision score is 0.8370879772350012 and the recall score is 0.6511713705958311

from sklearn.metrics import f1_score
f1_score(y_train_5, y_train_pred)

0.7325171197343846

ML (Binary-Classification-Metrics) :

ML (Binary-Classification-Metrics) :

from sklearn.metrics import precision_recall_curve
precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)

```
import matplotlib.pyplot as plt
plt.plot(thresholds, precisions[:-1] , c='r', label = 'precision')
plt.plot(thresholds, recalls[:-1] , c = 'b' , label = 'recall')
plt.legend()
plt.show()
```


ML (Binary-Classification - ROC) :

fpr : false positive rate **tpr** : true positive rate

```
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)
```

```
plt.plot(fpr , tpr)
plt.xlabel('false positive rate')
plt.ylabel('true positive rate')
plt.plot([0,1],[0,1],'k--')
```

[<matplotlib.lines.Line2D at 0x1237dc4f0>]

ML (Binary-Classification - AUC) :

Area Under the Curve more close to 1, better

from sklearn.metrics import roc_auc_score
roc_auc_score(y_train_5, y_scores)

0.9604938554008616

ML (Multi - Classification) :

Two Approach:

- 1. one versus all : train 10 classifiers,
- class 0-detector (distinguish zeros from non-zeros)
- class 1-detector (distinguish one from non-ones)

• ...

- > prediction: the predicted class of an image is the class with higher score.
- 2. one versus one: for any two class train a classifier
- O's versus 1's
- 0's versus 2's
- ...
- If there are n classes in general, we need $\frac{n(n-1)}{2}$ classifiers (they should be trained on smaller portions of data).
- prediction: the class assosiated to an image is one that win more duels!

ML (Multi - Classification) :

> Sklearn detects when a binary classifier is used for a multi-classification problem.

```
sgd_clf.fit(X_train, y_train)
```

```
SGDClassifier(random_state=42)
```

> In this case it automatically uses *one versus all* technique

ML (Multi - Classification) :

Some classification problems perform purely on large datasets, in such cases it might be more convenient to use *one versus one* technique.

```
from sklearn.multiclass import OneVsOneClassifier
ovo_clf = OneVsOneClassifier(SGDClassifier(random_state=42))
ovo_clf.fit(X_train, y_train)
ovo_clf.predict([some_digit])
```

array([5], dtype=uint8)

ML (Multi – Classification - Metrics) :

<pre>conf_mx = confusion_matrix(y_train, y_train_pred) conf_mx</pre>										
array([[5	635,	0,	61,	10,	16,	50,	46,	7,	66,	32],
[3,	6393,	95,	21,	16,	47,	15,	27,	109,	16],
[72,	56,	5174,	89,	69,	39,	163,	66,	212,	18],
[58,	32,	217,	4941,	23,	441,	32,	56,	216,	115],
[11,	26,	46,	6,	5298,	26,	73,	32,	87,	237],
[68,	23,	58,	150,	83,	4606,	174,	26,	152,	81],
[40,	13,	56,	6,	22,	113,	5625,	5,	36,	2],
[23,	24,	103,	36,	124,	40,	10,	5228,	75,	602],
[40,	101,	158,	122,	49,	457,	77,	35,	4666,	146],
]	33,	18,	66,	83,	515,	127,	4,	485,	166,	445211)
ML (Multi – Classification - Metrics) :

ML (Multi – Classification - Metrics) :

row_sums = conf_mx.sum(axis=1, keepdims=True)
norm_conf_mx = conf_mx / row_sums
np.fill_diagonal(norm_conf_mx, 0)

plt.matshow(norm_conf_mx , cmap = plt.cm.gray)
plt.show()

